Combining Stereovision Matching Constraints for Solving the Correspondence Problem

نویسندگان

  • Gonzalo Pajares
  • P. Javier Herrera
  • Jesús M. de la Cruz
چکیده

A major portion of the research efforts of the computer vision community has been directed toward the study of the three-dimensional (3-D) structure of objects using machine analysis of images (Scharstein & Szeliski, 2002). We can view the problem of stereo analysis as consisting of the following steps: image acquisition, camera modelling, feature acquisition, image matching, depth determination and interpolation. The key step is that of image matching, that is, the process of identifying the corresponding points in two images that are cast by the same physical point in 3-D space (Barnard & Fishler, 1982). This chapter is devoted solely to this problem. A correspondence needs to be established between features from two images that correspond to some physical feature in space. Then, provided that the position of centres of projection, the focal length, the orientation of the optical axes, and the sampling interval of each camera are known, the depth can be established by triangulation. The stereo correspondence problem can be defined in terms of finding pairs of true matches, namely, pairs of features in two images that are generated by the same physical entity in space. These true matches generally satisfy some constraints (Tang et al., 2002): 1. Epipolar, given two features, one in an image and a second in the other one in the stereoscopic pair, if we follow a given line, established by the system geometry, these two features must lie on this line, which is the epipolar. 2. Similarity, matched features have similar local properties or attributes. 3. Smoothness, disparity values in a given neighbourhood change smoothly, except at a few depth discontinuities. 4. Ordering, the relative position among two features in an image is preserved in the other one for the corresponding matches. 5. Uniqueness, each feature in one image should be matched to a unique feature in the other image. A review of the state-of-art in stereovision matching allows us to distinguish two sorts of techniques broadly used in this discipline: area-based and feature-based. Area-based stereo techniques use correlation between brightness (intensity) patterns in the local neighbourhood of a pixel in one image with brightness patterns in the local neighbourhood of the other image (Scharstein & Szeliski, 2002; Herrera et al., 2009a,b,c; Herrera, 2010; Klaus et al., 2006). Feature-based methods use sets of pixels with similar attributes, normally, either pixels belonging to edges (Grimson, 1985; Ruichek & Postaire, 1996; Tang et al., 2002),

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric Polynomial Constraints in Higher-Order Graph Matching

Correspondence is a ubiquitous problem in computer vision and graph matching has been a natural way to formalize correspondence as an optimization problem. Recently, graph matching solvers have included higher-order terms representing affinities beyond the unary and pairwise level. Such higher-order terms have a particular appeal for geometric constraints that include three or more corresponden...

متن کامل

On the inverse maximum perfect matching problem under the bottleneck-type Hamming distance

Given an undirected network G(V,A,c) and a perfect matching M of G, the inverse maximum perfect matching problem consists of modifying minimally the elements of c so that M becomes a maximum perfect matching with respect to the modified vector. In this article, we consider the inverse problem when the modifications are measured by the weighted bottleneck-type Hamming distance. We propose an alg...

متن کامل

A New Method for Solving the Fully Interval Bilevel Linear Programming Problem with Equal Constraints

Most research on bilevel linear programming problem  is focused on its deterministic form, in which the coefficients and decision variables in the objective functions and constraints are assumed to be crisp. In fact, due to inaccurate information, it is difficult to know exactly values of coefficients that used to construct a bilevel model. The interval set theory is suitable for describing and...

متن کامل

Using an Efficient Penalty Method for Solving Linear Least Square Problem with Nonlinear Constraints

In this paper, we use a penalty method for solving the linear least squares problem with nonlinear constraints. In each iteration of penalty methods for solving the problem, the calculation of projected Hessian matrix is required. Given that the objective function is linear least squares, projected Hessian matrix of the penalty function consists of two parts that the exact amount of a part of i...

متن کامل

A revisit of a mathematical model for solving fully fuzzy linear programming problem with trapezoidal fuzzy numbers

In this paper fully fuzzy linear programming (FFLP) problem with both equality and inequality constraints is considered where all the parameters and decision variables are represented by non-negative trapezoidal fuzzy numbers. According to the current approach, the FFLP problem with equality constraints first is converted into a multi–objective linear programming (MOLP) problem with crisp const...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012